TORUS implemented

Jakub Skoczen, Index Data
jakub@indexdata.dk

TORUS implemented

= May be viewed as a "platform/language
iIndependent, xml-based, single inheritance
model”

= Represented as a file system structure:

torusld/
records/
|- world/
|- myrealm/

records ~ "overriding” symlinks

TORUSes are stackable

Im1A Im2A ImZB Im3A

6@

TORUSes are stackable

= Makes it possible to represent hierarchical
systems (oragnization>members>users) and
alter/add data on each level of the hierarchy

= URI addressability - solution to overly
complicated relational schemas - relations are
expressed as direct links to records (one-to-
one) or realms (one-to-many, many-to-many)

RESTful API

= Entities: record, layer, realm, property

= Listing records in a realm:
GET /records/realm/?layers=original,override&query={cql}

= Creating (overriding - worldld supplied) records:
POST record.xml /records/realm/

= Updating, Removing records from a realm:
PUT, DELETE ../records/realm/{rec_id}

Record profiles (interfaces)

= Torus records/layers are designed to be a
generic data containers, there's nothing in the
API that is bound to a specific record profile

= Describes a set of required/optional properties
(fields) - "searchable” (IR target) profile, identity
profile (user authentication)

Snippets of XML

Single record, final layer (after applying overrrides)
response:

GET /records/auth-17/id27/?layers=final

<record type="searchable"
uri="http://torus.org/records/auth-17/1d27">
<layer name="final">
<id>auth-17/id-27</id> # internal id in the TORUS
<zurl>z3950://loc.gov:210/voyager</zurl>
<comment>Please ignore this comment</comment>
<worldId>B.2</worldId> # identifies the 'parent' in the
world list (internal id)
</layer>
</record>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

